INTRABONY DEFECTS TREATED WITH A COMBINATION OF α-TRICALCIUMPHOSPHATE AND AN OILY CALCIUM HYDROXIDE SUSPENSION. A CASE SERIES

Stefan-Ioan Stratul1, Britta Willershausen2, Anton Sculean2

ABSTRACT

An oily Calcium Hydroxide formulation proved over the last years to be highly efficient in promoting bone regeneration in closed defects as periapical lesions, cysts, or postextraction defects. Aim of this study is the presentation on a case series of the surgical technique and of the clinical results after the treatment of deep intrabony periodontal defects with a combination of Alpha-TCP and an oily suspension of Calcium Hydroxide. Fourteen patients, each with a deep intrabony defect were treated with a combination of Alpha-TriCalcium Phosphate (BioBase® α-pore, Biovision GmbH., Ilmenau, Germany) and oily Calcium Hydroxide suspension (Osteoinductal®, Osteoinductal GmbH., Muenchen, Germany). An excellent postoperative healing was noticed. The clinical measurements six months after the treatment revealed a reduction of the probing pocket depth (PPD) from 7.93 ±1.44 mm to 3.7 ± 1.69 mm and a change of the mean clinical attachment level (CAL) from 8.07 ± 1.44mm to 4.21 ± 1.81 mm, while the mean gingival recession (GR) changed from 0.14 ± 0.53 mm to 1.29 ± 1.38 mm. Both the PPD and CAL changes were statistically significant compared to baseline ($p < 0.001$). The clinical results indicate that the combination of the two materials may lead to significant PPD reductions and CAL gains. As histological evidences of the healing obtained by this therapy are still expected, further validation of this combination in treatment of deep intrabony lesions will need controlled clinical studies, in order to elucidate whether this approach can improve the clinical outcomes, when compared to each single treatment.

Key Words: oily Calcium Hydroxide suspension, α-TCP, periodontal regeneration

INTRODUCTION

Results of basic research and clinical studies have proven the influence of an oily Calcium Hydroxide suspension (OCHS) on bone regeneration in closed defects subsequent to periapical surgeries, in bone cysts and postextraction alveolae.1,2 Its osteostimulative effect seems to rely on many factors, as the deposit action of the Calcium Hydroxide, which sustains the bone metabolism in a constant, mild alkali environment, the stimulation of the angiogenetic bone growth with concentration of the growth factors next to the defect wall, and the reduction of the inflammation in the
operated site, which enhances the wound healing. Histological and radiological analysis, both in animals and humans seem to indicate a predictable regeneration of closed bone defects. Such results recently led to attempts to use the oily Calcium Hydroxide suspension, alone or under various combinations, in treating periodontal defects.

Recently, a histology study in humans indicated that the treatment of chronic periodontal defects with OCHS alone could lead to the formation of a new attachment (cement with inserting collagen fibers) and alveolar bone. It has been also reported that the OCHS stimulates not only the bone formation, but also could inhibit the proliferation of epithelial cells. It has been assumed that the OCHS could act by concentrating the growth factors next to the defect wall, thus preventing their dilution towards the center of the defect. The treatment of intrabony defects with OCHS clinically resulted in significant reductions of the probing depths and gains of clinical attachment level. The obtained results were significantly superior to those achieved after the treatment with enamel matrix proteins and with guided tissue regeneration (GTR). A frequent complication of the GTR therapy is the exposure of the membrane with the subsequent bacterial contamination and even infection of the operated site. Such complications could negatively influence the postoperative healing and could even jeopardize the overall outcome of the therapy. The above mentioned complication does not occur in case of the OCHS therapy, and the postoperative healing seems to occur completely eventless in most of the cases. However, from clinical point of view, some practical problems could arise when using the OCHS alone: the material has a low consistency and, therefore, cannot ensure a sufficient stability of the mucoperiosteal flap, especially in one-wall and circular defects. Frequently, a collapse of the mucoperiosteal flap cannot be avoided, followed by the reduction of the space necessary for the regeneration process.

To overcome such inconveniences, the combination of the OCHS with a bone replacement material could offer a convenient solution. By this approach, the chemical and biological properties of the OCHS could be combined with the mechanical properties of the bone replacement material. In this combination, the OCHS could enhance the bone and the periodontal healing, while the bone replacement material could avoid the collapse of the mucoperiosteal flaps and ensure the post-surgical stability of the wound.

Bone replacement materials could originate from various sources. It is well-known that autologous bone harvested from intra- or extra-oral areas could provide the best results, being therefore regarded as the “golden standard” in the bone replacement procedures. Yet, the obtaining of such bone transplants often necessitate a second surgical intervention, that rarely complies with the routine-purpose of a periodontal intervention and with the availability and willingness of the patient to accept the transplant. There were assumptions (yet never clinically proven) that allografts and xenografts could involve the danger of transmission of viral diseases.

Tricalcium phosphate (TCP) is a highly purified, multi-crystallloid, porous form of the Calcium phosphate. It is partially resorbable and is normally used for the repair of non-pathologic sites, in which the resorption of the implant and a replacement by bone is expected. If the healing of the marginal periodontal defects is desired, TCP can provide repair similar to autologous bone.

TCP is compatible to the host tissue. The healing of the periodontal wound occurs with bone ingrowth in the pores of the TCP. Histological analysis of the healing of the defects revealed rather a long-junction epithelium than a connective attachment.

The combination of the mechanic properties of the TCP with the biological and chemical features of the OCHS could be both of biologic and clinical interest. So far, there are no clinical data regarding the combined therapy of OCHS and TCP in the treatment of intrabony periodontal defects.

OBJECTIVE

Aim of the study is the presentation of the surgical technique and of the clinical results after the treatment of intrabony defects with a combination of Alpha-TCP and an oily suspension of Calcium Hydroxide.

MATERIALS AND METHODS

Fourteen patients (9 male and 5 female), between 26 and 42 years old, non-smokers, each displaying one deep intrabony defect, were treated with a combination of alpha-TCP (BioBase® α-pore Biovision GmbH., Ilmenau, Germany) and an oily Calcium Hydroxide suspension (Osteoinductual®, Osteoinductual GmbH, Muenchen, Germany). All patients underwent initial therapy one month prior to surgery. All patients were instructed and motivated to maintain a good oral hygiene level, verified by a reduction of the PI (Sillness and Loe) < 1. Before surgery and six months after, the following clinical parameters were registered: the periodontal pocket
depth (PD), the gingival recession (GR) and the clinical attachment level (CAL). All measurements were performed with a rigid periodontal probe (PCP 12, Hu-Friedy), at six sites per tooth (buccal: mesiobuccal, central, distobuccal; oral: mesiooral, central, distooral). Radiographic examination was performed using the conventional RIO technique. For each patient, the highest measured value was taken into account and the mean PD, GR and CAL were calculated. The paired Student t-test was used to compare the differences between baseline values and values measured six months after. Surgery was performed under local anesthesia. A full thickness flap was raised after intrasulcular incision, without using release incisions. After removal of the granulation tissue, the exposed roots underwent thorough S/RP using ultrasonic devices and curettes. No resection surgery was performed, nor any root conditioning. Equal amounts of Osteoinductal® and BioBase® α-pore were mixed in a dappen dish to a putty consistency mixture, which was placed into the defects in direct contact with the rough, vital bone surface. The amount of mixture did not exceed the margins of the defect. Post surgical care included antibiotic therapy for one week (3x500 mg Amoxycillin daily) and 0.2% Chlorhexidin (Plak-Out®, Santa Balanos, Greece) mouth rinses, twice a day, for the following four weeks, as well as gentle debridement of the operated area every second week, for two months.

Figure 1. Case A; a) The bone defect exposed b) The mixture in situ

Figure 2. Case B; a) The bone defect exposed b) The mixture in situ

Results

The healing phase progressed uneventful. No signs of inflammation, infection, allergy or severe pain were present. Pre-and postoperative mean values of the PD GR and CAL are displayed in Table 1.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Teeth</th>
<th>Defect Type</th>
<th>Pre-surgery</th>
<th>6 months</th>
<th>Post-surgery</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>11</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>11</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>17</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1.
The clinical measurements six months after treatment revealed a reduction of the probing pocket depth (PPD) from 7.93 ± 1.44 mm to 3.7 ± 1.69 mm, and a change of the mean clinical attachment level (CAL) from 8.07 ± 1.44 mm to 4.21 ± 1.81 mm, while the mean gingival recession (GR) increased from 0.14 ± 0.53 mm to 1.29 ± 1.38 mm. Both the PPD and CAL changes were statistically significant compared to baseline (p<0.001). (Table 2)

Table 2. Mean and SD of the differences of the PD, GR and CAL and their statistical significance.

<table>
<thead>
<tr>
<th>Difference</th>
<th>mean</th>
<th>SD</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPD</td>
<td>4.86</td>
<td>2.18</td>
<td>0.00</td>
</tr>
<tr>
<td>GR</td>
<td>1.14</td>
<td>1.41</td>
<td>0.17</td>
</tr>
<tr>
<td>CAL</td>
<td>3.79</td>
<td>1.89</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Examination of Rx reveals a visible defect fill in all treated cases

Figure 3. Case A. X-Ray images before treatment (a) and six months after (b)

Figure 3. Case B. X-Ray images before treatment (a) and six months after (b)

DISCUSSION

The results of this case-series have indicated that the treatment of deep intrabony defects with OCHS and α-TriCalcium Phosphate could lead to statistically and clinically significant reductions of the periodontal probing depths and clinical attachment level gains. The observation that neither allergies nor infections occurred could signify that the combination of the two materials is well tolerated. These findings correlate with results of various studies relating the lack of allergic or foreign body reactions in both OCHS1 and α-TCP.29,30

Methodologically, the analysis of the results of the treatment with the combination OCHS + α-TCP could be evaluated with regard to the treatment of intrabony defects by mean of the combination of enamel matrix proteins (EMD) and bovine-derived xenografts (BDX) or bioactive glasses. There are many similarities between the two therapeutical approaches: both single treatment modalities (OCHS and EMD)
are considered to be “biologic”, both products have a fluidity that may necessitate the combination with a bone graft to prevent the collapse of the flaps and both approaches require a good stability of the wound for a favorable outcome. The combinations of EMD with alloplasts as bioactive glasses33, 34 or the bovine-derived xenograft Bio-Oss35, 36 have been tried and evaluated in controlled clinical and histological studies. Observations from animal-histological and human-histological studies demonstrated periodontal regeneration after treatment of intrabony defects with some of these combinations37-41. However, data from clinical studies present a large variability and failed to draw definitive conclusions on the possible clinical benefit of a combination therapy in relation to single therapies34, 35, 42-44.

 Beta-TriCalcium Phosphate (\(\beta\)-TCP) has been used in a series of case reports for the treatment of periodontal osseous lesions35, 45-47. After variable time intervals, a significant gain of bone was observed by means of re-entry or radiographs. However, there is no controlled study comparing the result of \(\alpha\)-TCP grafting with that of open flap debridement, and histology data from animal48, 49 and human studies50, 51, 52 showed that \(\alpha\)-TCP is rapidly resorbed or encapsulated by connective tissue, with minimal bone formation and no periodontal regeneration.

 Treatment of intrabony defects with \(\alpha\)-TCP resulted in an average of 2.3 mm CAL gain. Osteogenesis, cementogenesis, or connective attachment formation could not be identified. Instead, the slow-resorbable TCP particles (functioning as inert filling material) were tightly encapsulated in gingival connective tissue. The lack of bone and conjunctive attachment formation led to the conclusion that TCP has only a reduced effect on repair of the defect47.

 \(\alpha\)-TCP is an alloplast with osteoconductive capacities53, documented to be faster resorbable than \(b\)-TCP in closed bone defects54-59. \(\alpha\)-TCP has been documented so far in a clinical study that has found average PD reductions of 2.42 \(\pm\) 2.50 mm and CAL gains of 1.25 \(\pm\) 2.22 mm at 6 months after the treatment of intrabony defects14.

 On the other hand, treatment of intrabony defects with OCHS alone resulted in an average PD reduction of 5.33 \(\pm\) 1.40 mm and a CAL gain of 4.4 \(\pm\) 1.40 mm CAL6. So, the average CAL gains achieved in our study by the combination OCHS + \(\alpha\)-TCP are smaller than the average CAL gains achieved by the OCHS alone, but largely greater than the average CAL gains obtained by using the \(\alpha\)-TCP alone. These results should probably be compensated by the stability of the wound achieved primarily by using the combination OCHS + \(\alpha\)-TCP and by increased resorbtion capacity of the \(\alpha\)-TCP.

 A comparison with the already published results of the monotherapeutical approaches OCHS or TCP may be rendered difficult by the differences in the initial morphology of the defects. The majority of the defects taken into account in the present study displayed a combined 1-2-wall configuration, known as having a worser healing prognosis than the defects with 2-3 walls61, 62.

 The relatively marked CAL gain noted in this study could testify for the wound-stabilizing effect of the bone replacement material and could emphasize the clinical relevance of the combined therapy. The already described biological and clinical characteristics of OCHS and \(\alpha\)-TCP could offer some practical advantages in deep defects when compared with the GTR-technique or with the combination of GTR plus a bone replacement material, when an exposure of the membrane could be a major inconvenient. The combination of OCHS and \(\alpha\)-TCP could positively influence the wound healing as well, as suggested by the postoperative evolution of the cases. Indeed, no complications as abscesses or infections occurred postoperatively. However, the effect of the antibiotics on this particular positive outcome cannot be excluded.

 Antibiotics are being prescribed in most of the clinical studies on regenerative periodontal therapies64-66, however, the literature has no defined position on the influence of the antibiotic adjunctive postoperative medication67. More clinical controlled studies might be needed to elucidate the real need of postoperative antibiotics following regenerative periodontal treatments. More histological studies are also needed in order to determinate if the observed clinical results represent a true periodontal regeneration rather than a simple defect fill.

CONCLUSIONS

 The results of the case report indicate that treatment of deep intrabony defects using an oily Calcium Hydroxide suspension combined with \(\alpha\)-TCP can lead to a statistically and clinically significant reduction of the PD and CAL gain. The lack of allergic or infectious reactions indicates that the combination of the two materials, while stable and very well tolerated, benefits from the anti-inflammatory and possible osteostimulative action of the oily suspension of Calcium Hydroxide. As histological evidences of the healing obtained by this therapy are still expected, further validation of this combination in treatment of
deep intrabony lesions will need controlled clinical studies, in order to elucidate whether this approach can improve the clinical outcomes, when compared to each single treatment.

REFERENCES

